Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states
نویسندگان
چکیده
منابع مشابه
Tight-binding approach to time-dependent density-functional response theory
In this paper we propose an extension of the self-consistent charge-density-functional tight-binding ~SCCDFTB! method @M. Elstner et al., Phys. Rev. B 58, 7260 ~1998!#, which allows the calculation of the optical properties of finite systems within time-dependent density-functional response theory ~TD-DFRT!. For a test set of small organic molecules low-lying singlet excitation energies are com...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملElectronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods.
Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to explore the electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient sca...
متن کاملQuantal density functional theory of excited states.
We explain by quantal density functional theory the physics of mapping from any bound nondegenerate excited state of Schrödinger theory to an S system of noninteracting fermions with equivalent density and energy. The S system may be in a ground or excited state. In either case, the highest occupied eigenvalue is the negative of the ionization potential. We demonstrate this physics with example...
متن کاملNonadiabatic dynamics within time-dependent density functional tight binding method.
A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional tight binding method (TDDFTB) combined with Tully's stochastic surface hopping algorithm. The applicability of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics of microsolvated adenine. Our results demonstrate that in the presenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2016
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4948647