Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight-binding approach to time-dependent density-functional response theory

In this paper we propose an extension of the self-consistent charge-density-functional tight-binding ~SCCDFTB! method @M. Elstner et al., Phys. Rev. B 58, 7260 ~1998!#, which allows the calculation of the optical properties of finite systems within time-dependent density-functional response theory ~TD-DFRT!. For a test set of small organic molecules low-lying singlet excitation energies are com...

متن کامل

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

Electronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods.

Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to explore the electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient sca...

متن کامل

Quantal density functional theory of excited states.

We explain by quantal density functional theory the physics of mapping from any bound nondegenerate excited state of Schrödinger theory to an S system of noninteracting fermions with equivalent density and energy. The S system may be in a ground or excited state. In either case, the highest occupied eigenvalue is the negative of the ionization potential. We demonstrate this physics with example...

متن کامل

Nonadiabatic dynamics within time-dependent density functional tight binding method.

A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional tight binding method (TDDFTB) combined with Tully's stochastic surface hopping algorithm. The applicability of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics of microsolvated adenine. Our results demonstrate that in the presenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2016

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.4948647